Files
scrollsmith/imageGenerator.js
Madison Grubb 96480a351f
Some checks failed
ci/woodpecker/cron/ci Pipeline failed
make it start working again
2025-12-11 23:13:07 -05:00

258 lines
7.8 KiB
JavaScript

import sharp from 'sharp';
import path from "path";
import { mkdir, writeFile } from "fs/promises";
import { fileURLToPath } from "url";
import { callOllama, OLLAMA_MODEL } from "./ollamaClient.js";
const COMFYUI_ENABLED = process.env.COMFYUI_ENABLED !== 'false';
const __dirname = path.dirname(fileURLToPath(import.meta.url));
const COMFYUI_URL = process.env.COMFYUI_URL || "http://localhost:8188";
// Drawing style prefix
const STYLE_PREFIX = `clean line art, minimalist sketch, concept art, black and white line drawing, lots of white space, sparse shading, simple black hatching, very low detail`;
const ACCENT_COLORS = ["red", "blue", "yellow", "green", "purple", "orange"];
function selectRandomAccentColor() {
return ACCENT_COLORS[Math.floor(Math.random() * ACCENT_COLORS.length)];
}
async function upscaleImage(inputPath, outputPath, width, height) {
try {
await sharp(inputPath)
.resize(width, height, { kernel: 'lanczos3' })
.blur(0.3)
.sharpen({
sigma: 1,
flat: 1,
jagged: 2,
})
.png({
compressionLevel: 9,
adaptiveFiltering: true,
palette: true
})
.toFile(outputPath);
console.log(`Upscaled + compressed PNG saved: ${outputPath}`);
return outputPath;
} catch (err) {
console.error("Error during upscaling:", err.message);
return null;
}
}
// 1. Generate engineered visual prompt
async function generateVisualPrompt(flavor) {
const rawPrompt = await callOllama(
`You are a prompt engineer specializing in visual prompts for AI image generation. Your goal is to translate fantasy flavor text into a sparse, minimalist scene description.
Your output must be a simple list of visual tags describing only the most essential elements of the scene. Focus on the core subject and mood.
Rules:
- Describe a sparse scene with a single focal point or landscape.
- Use only 3-5 key descriptive phrases or tags.
- The entire output should be very short, 20-50 words maximum.
- Do NOT repeat wording from the input.
- Describe only the visual elements of the image. Focus on colors, shapes, textures, and spatial relationships.
- Exclude any references to style, medium, camera effects, sounds, hypothetical scenarios, or physical sensations.
- Avoid describing fine details; focus on large forms and the overall impression.
- Do NOT include phrases like “an image of” or “a scene showing”.
- Do NOT include the word "Obsidian" or "obsidian" at all.
Input:
${flavor}
Output:`,
OLLAMA_MODEL,
3,
"Generate Visual Prompt"
);
const accentColor = selectRandomAccentColor();
return `${STYLE_PREFIX}, on white paper, monochrome with a single accent of ${accentColor}, ${rawPrompt.trim().replace(/\n/g, " ")}`;
}
// 2. Save image buffer
async function saveImage(buffer, filename) {
const filepath = path.join(__dirname, filename);
await mkdir(__dirname, { recursive: true });
await writeFile(filepath, buffer);
console.log(`Saved image: ${filepath}`);
return filepath;
}
// 3. Build workflow payload
function buildComfyWorkflow(promptText, negativeText = "") {
return {
"3": {
"inputs": {
"seed": Math.floor(Math.random() * 100000),
"steps": 4,
"cfg": 1,
"sampler_name": "euler",
"scheduler": "simple",
"denoise": 1,
"model": ["4", 0],
"positive": ["6", 0],
"negative": ["7", 0],
"latent_image": ["5", 0]
},
"class_type": "KSampler"
},
"4": {
"inputs": {
"unet_name": "flux1-schnell-fp8.safetensors",
"weight_dtype": "fp8_e4m3fn"
},
"class_type": "UNETLoader"
},
"5": {
"inputs": {
"width": 728,
"height": 512,
"batch_size": 1
},
"class_type": "EmptyLatentImage"
},
"6": {
"inputs": {
"text": promptText,
"clip": ["10", 0]
},
"class_type": "CLIPTextEncode"
},
"7": {
"inputs": {
"text": negativeText,
"clip": ["10", 0]
},
"class_type": "CLIPTextEncode"
},
"10": {
"inputs": {
"clip_name1": "clip_l.safetensors",
"clip_name2": "t5xxl_fp8_e4m3fn.safetensors",
"type": "flux"
},
"class_type": "DualCLIPLoader"
},
"11": {
"inputs": {
"vae_name": "ae.safetensors"
},
"class_type": "VAELoader"
},
"8": {
"inputs": {
"samples": ["3", 0],
"vae": ["11", 0]
},
"class_type": "VAEDecode"
},
"9": {
"inputs": {
"filename_prefix": "ComfyUI_Flux",
"images": ["8", 0]
},
"class_type": "SaveImage"
}
};
}
// 4a. Wait for ComfyUI to finish image generation
async function waitForImage(promptId, timeout = 900000) {
const start = Date.now();
while (Date.now() - start < timeout) {
const res = await fetch(`${COMFYUI_URL}/history`);
const data = await res.json();
const historyEntry = data[promptId];
if (historyEntry?.outputs) {
const images = Object.values(historyEntry.outputs).flatMap(o => o.images || []);
if (images.length > 0) return images.map(i => i.filename);
}
await new Promise(resolve => setTimeout(resolve, 1000));
}
throw new Error("Timed out waiting for ComfyUI image result.");
}
// 4b. Download image from ComfyUI server
async function downloadImage(filename, localFilename) {
const url = `${COMFYUI_URL}/view?filename=${filename}`;
const res = await fetch(url);
if (!res.ok) throw new Error(`Failed to fetch image: ${res.statusText}`);
const buffer = Buffer.from(await res.arrayBuffer());
return await saveImage(buffer, localFilename);
}
// 4c. Submit prompt and handle full image pipeline
async function generateImageViaComfyUI(prompt, filename) {
const negativePrompt = `heavy shading, deep blacks, dark, gritty, shadow-filled, chiaroscuro, scratchy lines, photorealism, hyper-realistic, high detail, 3D render, CGI, polished, smooth shading, detailed textures, noisy, cluttered, blurry, text, logo, signature, watermark, artist name, branding, ugly, deformed, unnatural patterns, perfect curves, repetitive textures`;
const workflow = buildComfyWorkflow(prompt, negativePrompt);
try {
console.log("Submitting prompt to ComfyUI...");
const res = await fetch(`${COMFYUI_URL}/prompt`, {
method: "POST",
headers: { "Content-Type": "application/json" },
body: JSON.stringify({ prompt: workflow })
});
if (!res.ok) {
throw new Error(`ComfyUI error: ${res.statusText}`);
}
const { prompt_id } = await res.json();
console.log("Waiting for image result...");
const filenames = await waitForImage(prompt_id);
if (filenames.length === 0) throw new Error("No image generated");
const comfyFilename = filenames[0];
console.log("Downloading image...");
const filepath = await downloadImage(comfyFilename, filename);
return filepath;
} catch (err) {
console.error("Error generating image:", err.message);
return null;
}
}
// 5. Main export
export async function generateDungeonImages({ flavor }) {
console.log("Generating dungeon image...");
if (!COMFYUI_ENABLED) {
console.log("ComfyUI image generation disabled via .env; using existing upscaled image.");
return path.join(__dirname, "dungeon_upscaled.png");
}
const finalPrompt = await generateVisualPrompt(flavor);
console.log("Engineered visual prompt:\n", finalPrompt);
const baseFilename = `dungeon.png`;
const upscaledFilename = `dungeon_upscaled.png`;
const filepath = await generateImageViaComfyUI(finalPrompt, baseFilename);
if (!filepath) {
throw new Error("Failed to generate dungeon image.");
}
// Upscale 2x (half of A4 at 300dpi)
const upscaledPath = await upscaleImage(filepath, upscaledFilename, 1456, 1024);
if (!upscaledPath) {
throw new Error("Failed to upscale dungeon image.");
}
return upscaledPath;
}